The Use of Size Functions for Comparison of Shapes Through Differential Invariants
Autor: | Françoise Dibos, Patrizio Frosini, Denis Pasquignon |
---|---|
Přispěvatelé: | F. Dibo, P. Frosini, D. Pasquignon |
Rok vydání: | 2004 |
Předmět: |
Statistics and Probability
Similarity (geometry) Group (mathematics) Applied Mathematics Mathematical analysis CALCULUS ON MANIFOLDS NONLINEAR OPERATORS Graph of a function Condensed Matter Physics Curvature REAL-VALUED FUNCTIONS Modeling and Simulation Differential invariant Geometry and Topology Computer Vision and Pattern Recognition Focus (optics) Rotation (mathematics) Computer Science::Databases Differential (mathematics) Mathematics |
Zdroj: | Journal of Mathematical Imaging and Vision. 21:107-118 |
ISSN: | 0924-9907 |
DOI: | 10.1023/b:jmiv.0000035177.68567.3b |
Popis: | For comparison of shapes under subgroups of the projective group, we can use a lot of invariants and especially differential invariants coming from multiscale analysis. But such invariants, as we have to compute curvature, are very sensitive to the noise induced by the dicretization grid. In order to resolve this problem we use size functions which can recognize the ``qualitative similarity" between graphs of functions that should be theorically coinciding but, unfortunately, change their values due to the presence of noise. Moreover, we focus this study on a projective differential invariant which allows to decide if one shape can be considered as the deformation of another one by a rotation of the camera. |
Databáze: | OpenAIRE |
Externí odkaz: |