Analytical Approach and Numerical Simulation of Reinforced Concrete Beams Strengthened with Different FRCM Systems

Autor: Christian Escrig, Ernest Bernat-Maso, Luis Mercedes, Lluís Gil
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria, Universitat Politècnica de Catalunya. LITEM - Laboratori per a la Innovació Tecnològica d'Estructures i Materials
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Work (thermodynamics)
Materials science
Bending
Reinforced concrete construction
Concrete beams
0211 other engineering and technologies
chemistry.chemical_element
concrete beam
Concrete beam
02 engineering and technology
Enginyeria dels materials [Àrees temàtiques de la UPC]
FRCM
Analytical model
lcsh:Technology
Article
Numerical model
Matrix (mathematics)
021105 building & construction
Cementitious matrix
General Materials Science
Composite material
lcsh:Microscopy
lcsh:QC120-168.85
Construcció en formigó armat amb fibres
Computer simulation
lcsh:QH201-278.5
lcsh:T
analytical model
bending
021001 nanoscience & nanotechnology
cementitious matrix
numerical model
chemistry
lcsh:TA1-2040
Bigues de formigó armat
Bending moment
lcsh:Descriptive and experimental mechanics
Cementitious
lcsh:Electrical engineering. Electronics. Nuclear engineering
Bigues de formigó
0210 nano-technology
Reduction (mathematics)
lcsh:Engineering (General). Civil engineering (General)
Carbon
lcsh:TK1-9971
Zdroj: Materials, Vol 14, Iss 1857, p 1857 (2021)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Materials
Materials; Volume 14; Issue 8; Pages: 1857
ISSN: 1996-1944
Popis: Fabric-reinforced cementitious matrices (FRCMs) are a novel composite material for strengthening structures. Fabric contributes to tying cross-sections under tensile stress. The complexity of the interfaces between the fabric and the matrix does not allow having a simple and accurate model that enables practitioners to perform feasible calculations. This work developed an analytical approach and a numerical simulation based on the reduction of FRCMs’ strength capabilities under tensile stress states. The concept of effective strength was estimated for different types of fabrics (basalt, carbon, glass, poly p-phenylene benzobisoxazole (PBO), and steel) from experimental evidence. The proposed models calculate the ultimate bending moment for reinforced concrete (RC) structures strengthened with FRCMs. The numerical models performed simulations that reproduced the moment–deflection curves of the different tested beams. Steel fabric showed the highest contribution to strength (78%), while PBO performed the worst (6%). Basalt and carbon showed irregular contributions. The authors gratefully acknowledge the financial support from the Ministry of Science, Innovation and Universities of the Spanish Government (MCIU), the State Agency of Research (AEI), as well as that of the ERDF (European Regional Development Fund) through the project SEVERUS (Multilevel evaluation of seismic vulnerability and risk mitigation of masonry buildings in resilient historical urban centers, ref. num. RTI2018-099589-B-I00). The third author is a Serra Húnter Fellow.
Databáze: OpenAIRE