Analytical Approach and Numerical Simulation of Reinforced Concrete Beams Strengthened with Different FRCM Systems
Autor: | Christian Escrig, Ernest Bernat-Maso, Luis Mercedes, Lluís Gil |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria, Universitat Politècnica de Catalunya. LITEM - Laboratori per a la Innovació Tecnològica d'Estructures i Materials |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Work (thermodynamics)
Materials science Bending Reinforced concrete construction Concrete beams 0211 other engineering and technologies chemistry.chemical_element concrete beam Concrete beam 02 engineering and technology Enginyeria dels materials [Àrees temàtiques de la UPC] FRCM Analytical model lcsh:Technology Article Numerical model Matrix (mathematics) 021105 building & construction Cementitious matrix General Materials Science Composite material lcsh:Microscopy lcsh:QC120-168.85 Construcció en formigó armat amb fibres Computer simulation lcsh:QH201-278.5 lcsh:T analytical model bending 021001 nanoscience & nanotechnology cementitious matrix numerical model chemistry lcsh:TA1-2040 Bigues de formigó armat Bending moment lcsh:Descriptive and experimental mechanics Cementitious lcsh:Electrical engineering. Electronics. Nuclear engineering Bigues de formigó 0210 nano-technology Reduction (mathematics) lcsh:Engineering (General). Civil engineering (General) Carbon lcsh:TK1-9971 |
Zdroj: | Materials, Vol 14, Iss 1857, p 1857 (2021) UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Materials Materials; Volume 14; Issue 8; Pages: 1857 |
ISSN: | 1996-1944 |
Popis: | Fabric-reinforced cementitious matrices (FRCMs) are a novel composite material for strengthening structures. Fabric contributes to tying cross-sections under tensile stress. The complexity of the interfaces between the fabric and the matrix does not allow having a simple and accurate model that enables practitioners to perform feasible calculations. This work developed an analytical approach and a numerical simulation based on the reduction of FRCMs’ strength capabilities under tensile stress states. The concept of effective strength was estimated for different types of fabrics (basalt, carbon, glass, poly p-phenylene benzobisoxazole (PBO), and steel) from experimental evidence. The proposed models calculate the ultimate bending moment for reinforced concrete (RC) structures strengthened with FRCMs. The numerical models performed simulations that reproduced the moment–deflection curves of the different tested beams. Steel fabric showed the highest contribution to strength (78%), while PBO performed the worst (6%). Basalt and carbon showed irregular contributions. The authors gratefully acknowledge the financial support from the Ministry of Science, Innovation and Universities of the Spanish Government (MCIU), the State Agency of Research (AEI), as well as that of the ERDF (European Regional Development Fund) through the project SEVERUS (Multilevel evaluation of seismic vulnerability and risk mitigation of masonry buildings in resilient historical urban centers, ref. num. RTI2018-099589-B-I00). The third author is a Serra Húnter Fellow. |
Databáze: | OpenAIRE |
Externí odkaz: |