A Comparative Assessment of Variable Selection Methods in Urban Water Demand Forecasting

Autor: Rezaul Chowdhury, Dharma Hagare, Mahmudul Haque, Ataur Rahman
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Water, Vol 10, Iss 4, p 419 (2018)
Water; Volume 10; Issue 4; Pages: 419
ISSN: 2073-4441
Popis: Urban water demand is influenced by a variety of factors such as climate change, population growth, socio-economic conditions and policy issues. These variables are often correlated with each other, which may create a problem in building appropriate water demand forecasting model. Therefore, selection of the appropriate predictor variables is important for accurate prediction of future water demand. In this study, seven variable selection methods in the context of multiple linear regression analysis were examined in selecting the optimal predictor variable set for long-term residential water demand forecasting model development. These methods were (i) stepwise selection, (ii) backward elimination, (iii) forward selection, (iv) best model with residual mean square error criteria, (v) best model with the Akaike information criterion, (vi) best model with Mallow’s Cp criterion and (vii) principal component analysis (PCA). The results showed that different variable selection methods produced different multiple linear regression models with different sets of predictor variables. Moreover, the selection methods (i)–(vi) showed some irrational relationships between the water demand and the predictor variables due to the presence of a high degree of correlations among the predictor variables, whereas PCA showed promising results in avoiding these irrational behaviours and minimising multicollinearity problems.
Databáze: OpenAIRE