The minimal and maximal energies of all cubic circulant graphs
Autor: | Kerem Kaskaloglu, Alper Bulut, Ilhan Hacioglu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | AKCE International Journal of Graphs and Combinatorics, Vol 18, Iss 3, Pp 148-153 (2021) |
ISSN: | 2543-3474 0972-8600 |
Popis: | In recent article, Zhou and Zhou conjectured that among cubic circulant graphs with n vertices the maximum energy occurs whenever the largest number of components is attained. In this article, first we compute the upper and lower bounds for the energies of the isomorphic copies of Möbius ladder graph and the prism graph on n vertices then we explicitly determine the minimal and maximal energies of all cubic circulant graphs on n vertices. |
Databáze: | OpenAIRE |
Externí odkaz: |