Counterexamples to the extendibility of positive unital norm-one maps

Autor: Giulio Chiribella, Kenneth R. Davidson, Vern I. Paulsen, Mizanur Rahaman
Přispěvatelé: The University of Hong Kong (HKU), University of Waterloo [Waterloo], Traitement optimal de l'information avec des dispositifs quantiques (QINFO), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Grenoble Alpes (UGA)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), HEP, INSPIRE, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Linear Algebra Appl.
Linear Algebra Appl., 2023, 663, pp.102-115. ⟨10.1016/j.laa.2023.01.003⟩
Popis: Arveson's extension theorem guarantees that every completely positive map defined on an operator system can be extended to a completely positive map defined on the whole C*-algebra containing it. An analogous statement where complete positivity is replaced by positivity is known to be false. A natural question is whether extendibility could still hold for positive maps satisfying stronger conditions, such as being unital and norm 1. Here we provide three counterexamples showing that positive norm-one unital maps defined on an operator subsystem of a matrix algebra cannot be extended to a positive map on the full matrix algebra. The first counterexample is an unextendible positive unital map with unit norm, the second counterexample is an unextendible positive unital isometry on a real operator space, and the third counterexample is an unextendible positive unital isometry on a complex operator space.
Comments are welcome
Databáze: OpenAIRE