From Hearing to Listening: Design and Properties of an Actively Tunable Electronic Hearing Sensor

Autor: Tom Jasa, Ruedi Stoop, Yoko Uwate, Stefan Martignoli
Přispěvatelé: University of Zurich, Stoop, R
Rok vydání: 2007
Předmět:
Zdroj: Sensors (Basel, Switzerland)
Sensors, Vol 7, Iss 12, Pp 3287-3298 (2007)
Sensors; Volume 7; Issue 12; Pages: 3287-3298
Sensors, 7 (12)
ISSN: 1424-8220
DOI: 10.3390/s7123287
Popis: An important step towards understanding the working principles of the mammalian hearing sensor is the concept of an active cochlear amplifier. Theoretical arguments and physiological measurements suggest that the active cochlear amplifiers originate from systems close to a Hopf bifurcation. Efforts to model the mammalian hearing sensor on these grounds have, however, either had problems in reproducing sufficiently close essential aspects of the biological example (Magnasco, M.O. Phys. Rev. Lett. 90, 058101 (2003); Duke, T. & Jülicher, F. Phys. Rev. Lett. 90, 158101 (2003)), or required complicated spatially coupled differential equation systems that are unfeasible for transient signals (Kern, A. & Stoop, R. Phys. Rev. Lett. 91, 128101 (2003)). Here, we demonstrate a simple system of electronically coupled Hopf amplifiers that not only leads to the desired biological response behavior, but also has real-time capacity. The obtained electronic Hopf cochlea shares all salient signal processing features exhibited by the mammalian cochlea and thus provides a simple and efficient design of an artificial mammalian hearing sensor.
Sensors, 7 (12)
ISSN:1424-8220
Databáze: OpenAIRE