Yoga Improves Upper-Extremity Function and Scapular Posturing in Persons with Hyperkyphosis

Autor: Gail A. Greendale, George J. Salem, Leslie Kazadi, Man-Ying Wang
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Popis: Objective: Hyperkyphosis (excess thoracic spine curvature) is associated with upper-extremity functional limitations and altered scapular posturing. The purpose of this study was to quantify the changes in upper-extremity function and scapular posturing following a 6-month yogaintervention in persons with hyperkyphosis. Methods: Twenty-one older adults with hyperkyphosis (75.5+7.4 yrs) enrolled in the UCLA Yoga for Kyphosis randomized controlled trial, elected to participate in this uncontrolled, prepost substudy of upper-extremity function. They were measured at baseline and after a 24-week yoga intervention. Maximum vertical reach and timed book tests were used to evaluate upper-extremity function. Scapular posturing was quantified using a motion analysis system and data was obtained under 4 conditions: 1) quiet-standing, 2) normal walking, 3) fast walking, and 4) seated. Paired t-tests were used to test for changes between baseline and 6-month follow-up measures and Cohen’s d was calculated to examine effect sizes. Results: Following the 6-month yoga intervention, participants improved their book test performance by 26.4% (p < 0.001; d = 1.5). Scapular protraction decreased by 2.9% during the static-sitting condition (p < 0.001; d = 0.5) and the overall excursion of the scapulae decreased for both fast (25.0%, p < 0.05; d = 0.6) and self-selected walking (29.4%, p < 0.01; d = 0.9). There were no changes in maximum vertical reach. Conclusion: Subjects demonstrated significant improvements with small to large effect sizes in the timed book test and scapular posturing to a less protracted position during both static and dynamic conditions after the intervention. These adaptations are likely to reduce the risk of scapular impingement and help preserve functional independence in older adults.
Databáze: OpenAIRE