Discovering Tight Space-Time Sequences

Autor: Fabio Porto, Fábio André Perosi, Florent Masseglia, Eduardo Ogasawara, Esther Pacitti, Heraldo Borges, Riccardo Campisano
Přispěvatelé: Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (Rio de Janeiro) ( CEFET/RJ), Laboratorio Nacional de Computação Cientifica [Rio de Janeiro] (LNCC / MCT), Universidade Federal do Rio de Janeiro (UFRJ), Scientific Data Management (ZENITH), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: 20th International Conference on Big Data Analytics and Knowledge Discovery
DaWaK: Data Warehousing and Knowledge Discovery
DaWaK: Data Warehousing and Knowledge Discovery, Sep 2018, Regensburg, Germany. pp.247-257, ⟨10.1007/978-3-319-98539-8_19⟩
Big Data Analytics and Knowledge Discovery ISBN: 9783319985381
DaWaK
Big Data Analytics and Knowledge Discovery-20th International Conference, DaWaK 2018, Regensburg, Germany, September 3–6, 2018, Proceedings
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Big Data Analytics and Knowledge Discovery
ISSN: 0302-9743
1611-3349
DOI: 10.1007/978-3-319-98539-8_19⟩
Popis: International audience; The problem of discovering spatiotemporal sequential patterns affects a broad range of applications. Many initiatives find sequences constrained by space and time. This paper addresses an appealing new challenge for this domain: find tight space-time sequences, i.e., find within the same process: i) frequent sequences constrained in space and time that may not be frequent in the entire dataset and ii) the time interval and space range where these sequences are frequent. The discovery of such patterns along with their constraints may lead to extract valuable knowledge that can remain hidden using traditional methods since their support is extremely low over the entire dataset. We introduce a new Spatio-Temporal Sequence Miner (ST SM) algorithm to discover tight space-time sequences. We evaluate ST SM using a proof of concept use case. When compared with general spatial-time sequence mining algorithms (GST SM), ST SM allows for new insights by detecting maximal space-time areas where each pattern is frequent. To the best of our knowledge, this is the first solution to tackle the problem of identifying tight space-time sequences.
Databáze: OpenAIRE