Exploratory Data Analysis in Quality-Improvement Projects

Autor: Jeroen de Mast, Albert Trip
Přispěvatelé: Stochastics (KDV, FNWI)
Rok vydání: 2007
Předmět:
Zdroj: Journal of Quality Technology, 39(4), 301-311. American Society for Quality
ISSN: 2575-6230
0022-4065
Popis: The aim of this paper is to provide a prescriptive framework for exploratory data analysis (EDA) in quality improvement projects. The framework is developed on the basis of a large number of real-life applications. The three steps of EDA are described: display the data, identify salient features, and interpret salient features. Graphical display of data, Shewhart's assignable causes, the maximum entropy principle, abduction and explanatory coherence all are part of the resulting framework. Furthermore, the roles of probabilistic reasoning and automatic statistical procedures in EDA are discussed.
Databáze: OpenAIRE