Weak approximate unitary designs and applications to quantum encryption

Autor: Christian Majenz, Cécilia Lancien
Přispěvatelé: Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Centrum Wiskunde & Informatica, Amsterdam (CWI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands
Jazyk: angličtina
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
Computer Science - Cryptography and Security
Physics and Astronomy (miscellaneous)
Approximations of π
FOS: Physical sciences
[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
01 natural sciences
Unitary state
[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
0103 physical sciences
FOS: Mathematics
0101 mathematics
Quantum information
010306 general physics
Quantum
Mathematics
Key size
Computer Science::Cryptography and Security
Discrete mathematics
Quantum Physics
010102 general mathematics
Probability (math.PR)
lcsh:QC1-999
Atomic and Molecular Physics
and Optics

Functional Analysis (math.FA)
Mathematics - Functional Analysis
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Quantum cryptography
Norm (mathematics)
Side information
Quantum Physics (quant-ph)
Cryptography and Security (cs.CR)
lcsh:Physics
Mathematics - Probability
Zdroj: Quantum
Quantum, 2020, ⟨10.22331/q-2020-08-28-313⟩
Quantum, Verein, 2020, ⟨10.22331/q-2020-08-28-313⟩
Quantum, 4
Quantum, Vol 4, p 313 (2020)
ISSN: 2521-327X
DOI: 10.22331/q-2020-08-28-313⟩
Popis: Unitary $t$-designs are the bread and butter of quantum information theory and beyond. An important issue in practice is that of efficiently constructing good approximations of such unitary $t$-designs. Building on results by Aubrun (Comm. Math. Phys. 2009), we prove that sampling $d^t\mathrm{poly}(t,\log d, 1/\epsilon)$ unitaries from an exact $t$-design provides with positive probability an $\epsilon$-approximate $t$-design, if the error is measured in one-to-one norm distance of the corresponding $t$-twirling channels. As an application, we give a partially derandomized construction of a quantum encryption scheme that has roughly the same key size and security as the quantum one-time pad, but possesses the additional property of being non-malleable against adversaries without quantum side information.
Comment: 20 pages. Published version
Databáze: OpenAIRE