Infinite Black Hole Entropies at Infinite Distances and Tower of States

Autor: Dieter Lust, Quentin Bonnefoy, Severin Lüst, Luca Ciambelli
Přispěvatelé: Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE31-0004,Black-dS-String,Micro-états de trous noirs et solutions de Sitter en Théorie des Cordes(2016), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Rok vydání: 2020
Předmět:
High Energy Physics - Theory
Nuclear and High Energy Physics
Event horizon
geometry [black hole]
Astrophysics::High Energy Astrophysical Phenomena
Kaluza–Klein theory
FOS: Physical sciences
entropy [black hole]
horizon [black hole]
supersymmetry: 2
black hole: horizon
String theory
01 natural sciences
Theoretical physics
General Relativity and Quantum Cosmology
0103 physical sciences
Attractor
Effective field theory
lcsh:Nuclear and particle physics. Atomic energy. Radioactivity
ddc:530
black hole: entropy
string model
010306 general physics
Entropy (arrow of time)
Black hole thermodynamics
Physics
010308 nuclear & particles physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
Physique atomique et nucléaire
Black hole
2 [supersymmetry]
attractor
High Energy Physics - Theory (hep-th)
microstate
lcsh:QC770-798
Kaluza-Klein
black hole: geometry
Zdroj: Nucl.Phys.B
Nuclear physics. B, 958
Nuclear physics / B Particle physics 958, 115112 (2020). doi:10.1016/j.nuclphysb.2020.115112
Nucl.Phys.B, 2020, 958, pp.115112. ⟨10.1016/j.nuclphysb.2020.115112⟩
Nuclear Physics
Nuclear Physics B, Vol 958, Iss, Pp 115112-(2020)
ISSN: 0550-3213
DOI: 10.1016/j.nuclphysb.2020.115112
Popis: The aim of this paper is to elucidate a close connection between the black hole area law and the infinite distance conjecture in the context of the swampland. We consider families of black hole geometries, parametrized by their event horizon areas or by the values of their entropies, and show that the infinite entropy limit is always at infinite distance in the space of black hole geometries. It then follows from the infinite distance conjecture that there must be a tower of states in the infinite entropy limit, and that ignoring these towers on the horizon of the black hole would invalidate the effective theory when the entropy becomes large. We call this the black hole entropy distance conjecture. We then study two candidates for the tower of states. The first are the Kaluza-Klein modes of the internal geometry of extremal N=2 black holes in string theory, whose masses on the horizon are fixed by the N=2 attractor formalism, and given in terms of the black hole charges similarly to the entropy. However, we observe that it is possible to decouple their masses from the entropy, so that they cannot generically play the role of the tower. We thus consider a second kind of states: inspired by N-portrait quantum models of non-extremal black holes, we argue that the Goldstone-like modes that interpolate among the black hole microstates behave like the expected light tower of states.
SCOPUS: ar.j
info:eu-repo/semantics/published
Databáze: OpenAIRE