Phase instabilities in austenitic steels during particle bombardment at high and low dose rates

Autor: Levine, S.M., Pareige, Cristelle, Jiao, Z., Edmondson, P.D., Was, G.S., Zinkle, S.J., Bhattacharya, A.
Přispěvatelé: The University of Tennessee [Knoxville], Groupe de physique des matériaux (GPM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), University of Michigan [Ann Arbor], University of Michigan System, Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC
Rok vydání: 2022
Předmět:
Zdroj: Materials & Design
Materials & Design, 2022, 217, pp.110588. ⟨10.1016/j.matdes.2022.110588⟩
ISSN: 0264-1275
0261-3069
DOI: 10.1016/j.matdes.2022.110588
Popis: International audience; Disruption of phase stability by energetic particle bombardment is a major challenge in designing advanced radiation-tolerant alloys and ion beam processing of nanocomposites. Particularly, ballistic dissolution susceptibility of different solute nanocluster species in alloys is poorly understood. Here, low dose rate neutron irradiations were conducted on a Fe-Cr-Ni based austenitic steel in the BOR-60 reactor (9.4 10 7 dpa/s, 318 C) followed by accelerated dose rate ion irradiations at multiple temperatures (10 3 dpa/s, 380-420 C). Using atom probe tomography, the stability of radiation-enhanced Cu-rich and radiation-induced Ni-Si-Mn-rich nanoclusters was evaluated. During neutron irradiation, Cu-rich clusters nucleated with their core concentrations progressively increasing with dose, while Ni-Si-Mn-rich clusters formed and evolved into G-phase precipitates. Ion irradiations dramatically altered the nanoclusters. Curich clusters were ballistically dissolved, but Ni-Si-Mn-rich clusters remained stable and coarsened with dose at 400 and 420 C, highlighting that different nanocluster species in a single microstructure can have innately distinct ballistic dissolution susceptibilities. Solute-specific recoil rates were incorporated into the Heinig precipitate stability model, which shows that in addition to radiation-enhanced diffusion,recovery from ballistic dissolution depends on solute concentration gradient near cluster interfaces.The combined experimental-modeling study quantified the critical temperatures and damage rates where ballistic dissolution dominates for each cluster species.
Databáze: OpenAIRE