EEG Analysis in Structural Focal Epilepsy Using the Methods of Nonlinear Dynamics (Lyapunov Exponents, Lempel-Ziv Complexity, and Multiscale Entropy)
Autor: | Tatiana Yu Yaroshenko, Antonina Yu. Karas, Maxim V. Zhigalov, Anton V. Krysko, V. Dobriyan, Nikolai M Yakovlev, Irina V Papkova, Nikolai P Erofeev, I. E. Kutepov, O. A. Saltykova, T. V. Yakovleva, Vadim A. Krysko |
---|---|
Rok vydání: | 2019 |
Předmět: |
Data Analysis
Technology Article Subject Computer science Science Physics::Medical Physics 02 engineering and technology Lyapunov exponent Electroencephalography General Biochemistry Genetics and Molecular Biology Multiscale entropy 03 medical and health sciences Epilepsy symbols.namesake 0302 clinical medicine 0202 electrical engineering electronic engineering information engineering medicine Humans General Environmental Science Signal processing medicine.diagnostic_test Series (mathematics) Quantitative Biology::Neurons and Cognition Spectrum (functional analysis) Signal Processing Computer-Assisted General Medicine medicine.disease Magnetic Resonance Imaging Nonlinear system Nonlinear Dynamics symbols Medicine 020201 artificial intelligence & image processing Epilepsies Partial Algorithm 030217 neurology & neurosurgery Algorithms Research Article |
Zdroj: | The Scientific World Journal The Scientific World Journal, Vol 2020 (2020) |
ISSN: | 1537-744X |
Popis: | This paper analyzes a case with the patient having focal structural epilepsy by processing electroencephalogram (EEG) fragments containing the “sharp wave” pattern of brain activity. EEG signals were recorded using 21 channels. Based on the fact that EEG signals are time series, an approach has been developed for their analysis using nonlinear dynamics tools: calculating the Lyapunov exponent’s spectrum, multiscale entropy, and Lempel–Ziv complexity. The calculation of the first Lyapunov exponent is carried out by three methods: Wolf, Rosenstein, and Sano–Sawada, to obtain reliable results. The seven Lyapunov exponent spectra are calculated by the Sano–Sawada method. For the observed patient, studies showed that with medical treatment, his condition did not improve, and as a result, it was recommended to switch from conservative treatment to surgical. The obtained results of the patient’s EEG study using the indicated nonlinear dynamics methods are in good agreement with the medical report and MRI data. The approach developed for the analysis of EEG signals by nonlinear dynamics methods can be applied for early detection of structural changes. |
Databáze: | OpenAIRE |
Externí odkaz: |