Autor: |
Marcin Chlebus, Daniel Chrościcki |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Entropy; Volume 24; Issue 9; Pages: 1218 |
ISSN: |
1099-4300 |
Popis: |
This paper compares model development strategies based on different performance metrics. The study was conducted in the area of credit risk modeling with the usage of diverse metrics, including general-purpose Area Under the ROC curve (AUC), problem-dedicated Expected Maximum Profit (EMP) and the novel case-tailored Calculated Profit (CP). The metrics were used to optimize competitive credit risk scoring models based on two predictive algorithms that are widely used in the financial industry: Logistic Regression and extreme gradient boosting machine (XGBoost). A dataset provided by the American Fannie Mae agency was utilized to conduct the study. In addition to the baseline study, the paper also includes a stability analysis. In each case examined the proposed CP metric that allowed us to achieve the most profitable loan portfolio. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|