Amplitude death and restoration in networks of oscillators with random-walk diffusion
Autor: | M. Carmen Miguel, Pau Clusella, Romualdo Pastor-Satorras |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. SIMCON - First-principles approaches to condensed matter physics: quantum effects and complexity |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Random walks (Mathematics)
QC1-999 General Physics and Astronomy FOS: Physical sciences Nonlinear theories Pattern Formation and Solitons (nlin.PS) Fixed point Astrophysics Complex networks and dynamic systems symbols.namesake Xarxes (Matemàtica) Rutes aleatòries (Matemàtica) Statistical physics Physics - Biological Physics Diffusion (business) Dispersion (water waves) Physics Hopf bifurcation Física [Àrees temàtiques de la UPC] Nets (Mathematics) Random walk Nonlinear Sciences - Pattern Formation and Solitons Nonlinear Sciences - Adaptation and Self-Organizing Systems QB460-466 Coupling (physics) Teories no lineals Biological Physics (physics.bio-ph) Amplitude death symbols Sistemes complexos Adaptation and Self-Organizing Systems (nlin.AO) Numerical stability |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Dipòsit Digital de la UB Universidad de Barcelona Communications Physics, Vol 4, Iss 1, Pp 1-11 (2021) |
Popis: | Systems composed of reactive particles diffusing in a network display emergent dynamics. While Fick’s diffusion can lead to Turing patterns, other diffusion schemes might display more complex phenomena. Here we study the death and restoration of collective oscillations in networks of oscillators coupled by random-walk diffusion, which modifies both the original unstable fixed point and the stable limit-cycle, making them topology-dependent. By means of numerical simulations we show that, in some cases, the diffusion-induced heterogeneity stabilizes the initially unstable fixed point via a Hopf bifurcation. Further increasing the coupling strength can moreover restore the oscillations. A numerical stability analysis indicates that this phenomenology corresponds to a case of amplitude death, where the inhomogeneous stabilized solution arises from the interplay of random walk diffusion and heterogeneous topology. Our results are relevant in the fields of epidemic spreading or ecological dispersion, where random walk diffusion is more prevalent. Since Turing’s seminal work, combining local reaction with diffusion is key to understand how patterns can appear in interacting systems. Here, the authors investigate the effect of coupling local dynamics with a non-traditional type of diffusion mechanism, random-walk diffusion, showing that this simple modification can give rise to previously unobserved amplitude death and restoration of collective oscillations |
Databáze: | OpenAIRE |
Externí odkaz: |