Non-ambiguous trees: New results and generalisation
Autor: | Bérénice Delcroix-Oger, Florent Hivert, Patxi Laborde-Zubieta, Adrien Boussicault, Jean-Christophe Aval |
---|---|
Přispěvatelé: | Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Delcroix-Oger, Bérénice, Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université Sciences et Technologies - Bordeaux 1-Université Bordeaux Segalen - Bordeaux 2 |
Rok vydání: | 2021 |
Předmět: |
non-ambiguous trees
Binary tree Differential equation 010102 general mathematics Dimension (graph theory) 0102 computer and information sciences [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] 01 natural sciences tree-like tableaux [MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] differential equation Combinatorics [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] 010201 computation theory & mathematics [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] Computer Science::Multimedia FOS: Mathematics binary trees Mathematics - Combinatorics Discrete Mathematics and Combinatorics Combinatorics (math.CO) 0101 mathematics Nuclear Experiment Physics::Atmospheric and Oceanic Physics Mathematics |
Zdroj: | FPSAC 2016 FPSAC 2016, 2016, Vancouver, Canada |
ISSN: | 0195-6698 |
DOI: | 10.1016/j.ejc.2021.103331 |
Popis: | We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a differential equation whose solution can be described combinatorially. This yield a new formula for the number of NATs. We also obtain q-versions of our formula. And we generalize NATs to higher dimension. Comment: Extended abstract |
Databáze: | OpenAIRE |
Externí odkaz: |