Unbabel's Submission to the WMT2019 APE Shared Task: BERT-based Encoder-Decoder for Automatic Post-Editing

Autor: Gonçalo M. Correia, António V. Lopes, Jonay Trénous, M. Amin Farajian, André F. T. Martins
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: WMT (3)
Popis: This paper describes Unbabel's submission to the WMT2019 APE Shared Task for the English-German language pair. Following the recent rise of large, powerful, pre-trained models, we adapt the BERT pretrained model to perform Automatic Post-Editing in an encoder-decoder framework. Analogously to dual-encoder architectures we develop a BERT-based encoder-decoder (BED) model in which a single pretrained BERT encoder receives both the source src and machine translation tgt strings. Furthermore, we explore a conservativeness factor to constrain the APE system to perform fewer edits. As the official results show, when trained on a weighted combination of in-domain and artificial training data, our BED system with the conservativeness penalty improves significantly the translations of a strong Neural Machine Translation system by $-0.78$ and $+1.23$ in terms of TER and BLEU, respectively. Finally, our submission achieves a new state-of-the-art, ex-aequo, in English-German APE of NMT.
Updated sections 2.2 and 4
Databáze: OpenAIRE
načítá se...