Redox Regulation of PPARγ in Polarized Macrophages

Autor: Ilka Wittig, Juliana Heidler, Verena Trümper, Bernhard Brüne, Florian Richter, Andreas von Knethen
Přispěvatelé: Publica
Rok vydání: 2020
Předmět:
Zdroj: PPAR Research, Vol 2020 (2020)
ISSN: 1687-4765
1687-4757
DOI: 10.1155/2020/8253831
Popis: The peroxisome proliferator-activated receptor (PPARγ) is a central mediator of cellular lipid metabolism and immune cell responses during inflammation. This is facilitated by its role as a transcription factor as well as a DNA-independent protein interaction partner. We addressed how the cellular redox milieu in the cytosol and the nucleus of lipopolysaccharide (LPS)/interferon-γ- (IFNγ-) and interleukin-4- (IL4-) polarized macrophages (MΦ) initiates posttranslational modifications of PPARγ, that in turn alter its protein function. Using the redox-sensitive GFP2 (roGFP2), we validated oxidizing and reducing conditions following classical and alternative activation of MΦ, while the redox status of PPARγ was determined via mass spectrometry. Cysteine residues located in the zinc finger regions (amino acid fragments AA 90-115, AA 116-130, and AA 160-167) of PPARγ were highly oxidized, accompanied by phosphorylation of serine 82 in response to LPS/IFNγ, whereas IL4-stimulation provoked minor serine 82 phosphorylation and less cysteine oxidation, favoring a reductive milieu. Mutating these cysteines to alanine to mimic a redox modification decreased PPARγ-dependent reporter gene transactivation supporting a functional shift of PPARγ associated with the MΦ phenotype. These data suggest distinct mechanisms for regulating PPARγ function based on the redox state of MΦ.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje