The formal theory of monoidal monads

Autor: Marek Zawadowski
Rok vydání: 2012
Předmět:
Zdroj: Journal of Pure and Applied Algebra. 216:1932-1942
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2012.02.030
Popis: We give a 3-categorical, purely formal argument explaining why on the category of Kleisli algebras for a lax monoidal monad, and dually on the category of Eilenberg-Moore algebras for an oplax monoidal monad, we always have a natural monoidal structures. The key observation is that the 2-category of lax monoidal monads in any 2-category D with finite products is isomorphic to the 2-category of monoidal objects with oplax morphisms in the 2-category of monads with lax morphisms in D. As we explain at the end of the paper a similar phenomenon occurs in many other situations.
Comment: 15 pages
Databáze: OpenAIRE