Localizing Multiple Faults in Simulink Models

Autor: Lionel C. Briand, Shiva Nejati, Lucia, Thomas Bruckmann, Bing Liu
Přispěvatelé: Fonds National de la Recherche - FnR [sponsor], Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab) [research center]
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: 23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER 2016). (2016).
SANER
Popis: As Simulink is a widely used language in the embedded industry, there is a growing need to support debugging activities for Simulink models. In this work, we propose an approach to localize multiple faults in Simulink models. Our approach builds on statistical debugging and is iterative. At each iteration, we identify and resolve one fault and re-test models to focus on localizing faults that might have been masked before. We use decision trees to cluster together failures that satisfy similar (logical) conditions on model blocks or inputs. We then present two alternative selection criteria to choose a cluster that is more likely to yield the best fault localization results among the clusters produced by our decision trees. Engineers are expected to inspect the ranked list obtained from the selected cluster to identify faults. We evaluate our approach on 240 multi-fault models obtained from three different industrial subjects. We compare our approach with two baselines: (1) Statistical debugging without clustering, and (2) State-of-the-art clustering-based statistical debugging. Our results show that our approach significantly reduces the number of blocks that engineers need to inspect in order to localize all faults, when compared with the two baselines. Furthermore, with our approach, there is less performance degradation than in the baselines when increasing the number of faults in the underlying models.
Databáze: OpenAIRE