Mechanisms governing the visco-elastic responses of living cells assessed by foam and tensegrity models
Autor: | Daniel Isabey, Sylvie Wendling-Mansuy, Patrick Cañadas, Patrick Chabrand, Valérie Laurent |
---|---|
Přispěvatelé: | Physiopathologie et Thérapeutiques Respiratoires, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Henri Mondor-Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR10, Laboratoire d'Aérodynamique et de Biomécanique du Mouvement (LABM), Centre National de la Recherche Scientifique (CNRS)-Université de la Méditerranée - Aix-Marseille 2, Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires (LBBOA), Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS), Rosu, Elena |
Jazyk: | angličtina |
Rok vydání: | 2003 |
Předmět: |
0206 medical engineering
Biomedical Engineering Modulus 02 engineering and technology Models Biological Viscoelasticity Cell Physiological Phenomena 03 medical and health sciences Viscosity Multimodular cytoskeleton [SPI.MECA.BIOM] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] Tensegrity Animals Elasticity (economics) [PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] Cytoskeleton Open unit-cell model 030304 developmental biology Physics 0303 health sciences business.industry Cell micromanipulation [PHYS.MECA.BIOM] Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] Time constant [SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] Structural engineering Mechanics Actin cytoskeleton 020601 biomedical engineering Elasticity Computer Science Applications Actin Cytoskeleton Structural viscosity Viscosity modulus Actin filaments business |
Zdroj: | Medical and Biological Engineering and Computing Medical and Biological Engineering and Computing, Springer Verlag, 2003, 41, pp.733-739. ⟨10.1007/BF02349982⟩ Medical and Biological Engineering and Computing, 2003, 41, pp.733-739. ⟨10.1007/BF02349982⟩ |
ISSN: | 0140-0118 1741-0444 |
DOI: | 10.1007/BF02349982⟩ |
Popis: | The visco-elastic properties of living cells, measured to date by various authors, vary considerably, depending on the experimental methods and/or on the theoretical models used. In the present study, two mechanisms thought to be involved in cellular visco-elastic responses were analysed, based on the idea that the cytoskeleton plays a fundamental role in cellular mechanical responses. For this purpose, the predictions of an open unit-cell model and a 30-element visco-elastic tensegrity model were tested, taking into consideration similar properties of the constitutive F-actin. The quantitative predictions of the time constant and viscosity modulus obtained by both models were compared with previously published experimental data obtained from living cells. The small viscosity modulus values (10(0)-10(3) Pa x s) predicted by the tensegrity model may reflect the combined contributions of the spatially rearranged constitutive filaments and the internal tension to the overall cytoskeleton response to external loading. In contrast, the high viscosity modulus values (10(3)-10(5) Pa x s) predicted by the unit-cell model may rather reflect the mechanical response of the cytoskeleton to the bending of the constitutive filaments and/or to the deformation of internal components. The present results suggest the existence of a close link between the overall visco-elastic response of micromanipulated cells and the underlying architecture. |
Databáze: | OpenAIRE |
Externí odkaz: |