Eu3+ optical activation engineering in Al Ga1-N nanowires for red solid-state nano-emitters
Autor: | Alexandra-Madalina Siladie, Maria R. Correia, Katharina Lorenz, D. Nd. Faye, E. Alves, Gwenolé Jacopin, Bruno Daudin, Teresa Monteiro, N. Ben Sedrine, J. Cardoso |
---|---|
Přispěvatelé: | Departamento de Fisica [Aveiro], Universidade de Aveiro, Semi-conducteurs à large bande interdite (SC2G), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Instituto de Plasmas e Fusão Nuclear [Lisboa] (IPFN), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Instituto de Engenharia de Sistemas e Computadores (INESC), Nanophysique et Semiconducteurs (NPSC), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Semi-conducteurs à large bande interdite (NEEL - SC2G) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Photoluminescence
Materials science Luminescence Band gap Annealing (metallurgy) AlxGa1-xN Nanowire Analytical chemistry chemistry.chemical_element Cathodoluminescence 02 engineering and technology 010402 general chemistry 01 natural sciences 7. Clean energy Europium General Materials Science Nanowires Red-emitters 021001 nanoscience & nanotechnology 0104 chemical sciences chemistry [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] 0210 nano-technology Molecular beam epitaxy |
Zdroj: | Applied Materials Today Applied Materials Today, Elsevier, 2021, 22, pp.100893. ⟨10.1016/j.apmt.2020.100893⟩ Applied Materials Today, 2021, 22, pp.100893. ⟨10.1016/j.apmt.2020.100893⟩ |
ISSN: | 2352-9407 |
DOI: | 10.1016/j.apmt.2020.100893⟩ |
Popis: | International audience; In this work, Eu3+-implanted and annealed AlxGa1-xN (0 ≤ x ≤ 1) nanowires (NWs) grown on GaN NW template on Si (111) substrates by plasma-assisted molecular beam epitaxy are studied by µ-Raman, cathodoluminescence (CL), nano-CL, and temperature-dependent steady-state photoluminescence (PL). The preferential location of the Eu3+-implanted ions is found to be at the AlxGa1-xN top-section. The recovery of the as-grown crystalline properties is achieved after rapid thermal annealing (RTA). After RTA, the red emission of the Eu3+ ions is attained for all the samples with below and above bandgap excitation. The 5D0 → 7F2 transition is the most intense one, experiencing a redshift with increasing AlN nominal content (x) from GaN to AlN NWs. Moreover, AlN nominal content and annealing temperature alter its spectral shape suggesting the presence of at least two distinct optically active Eu3+ centers (Eu1 and Eu2). Thermal quenching of the Eu3+ ions´ luminescence intensity, I, is determined for all the samples from 14 K to 300 K, being the emission of Eu3+-implanted AlN NWs after RTA at 1200 °C the most stable (I300 K/I14 K ~80%). The GaN/AlN interface in this sample is also found to have a key role in the Eu3+ optical activation. |
Databáze: | OpenAIRE |
Externí odkaz: |