DiaBLa: a corpus of bilingual spontaneous written dialogues for machine translation
Autor: | Eric Bilinski, Sophie Rosset, Thomas Lavergne, Rachel Bawden |
---|---|
Přispěvatelé: | School of Informatics [Edimbourg], University of Edinburgh, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Paris Sud (UPSUD) |
Rok vydání: | 2020 |
Předmět: |
FOS: Computer and information sciences
Linguistics and Language French Machine translation Computer science 02 engineering and technology Library and Information Sciences Corpus computer.software_genre [INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] Language and Linguistics Education English 0202 electrical engineering electronic engineering information engineering Dialogue Evaluation of machine translation Evaluation 060201 languages & linguistics Computer Science - Computation and Language business.industry Context 06 humanities and the arts Bilingual conversation Test set 0602 languages and literature 020201 artificial intelligence & image processing Artificial intelligence Computational linguistics business Computation and Language (cs.CL) computer Natural language processing Dataset |
Zdroj: | Language Resources and Evaluation Language Resources and Evaluation, Springer Verlag, 2020, ⟨10.1007/s10579-020-09514-4⟩ |
ISSN: | 1574-0218 1574-020X |
DOI: | 10.1007/s10579-020-09514-4 |
Popis: | We present a new English–French dataset for the evaluation of Machine Translation (MT) for informal, written bilingual dialogue. The test set contains 144 spontaneous dialogues (5700+ sentences) between native English and French speakers, mediated by one of two neural MT systems in a range of role-play settings. The dialogues are accompanied by fine-grained sentence-level judgments of MT quality, produced by the dialogue participants themselves, as well as by manually normalised versions and reference translations produceda posteriori. The motivation for the corpus is twofold: to provide (i) a unique resource for evaluating MT models, and (ii) a corpus for the analysis of MT-mediated communication. We provide an initial analysis of the corpus to confirm that the participants’ judgments reveal perceptible differences in MT quality between the two MT systems used. |
Databáze: | OpenAIRE |
Externí odkaz: |