Autor: |
Alex Kwiatkowski, Ezad Shojaee, Sristy Agrawal, Akira Kyle, Curtis L. Rau, Scott Glancy, Emanuel Knill |
Rok vydání: |
2022 |
Předmět: |
|
DOI: |
10.48550/arxiv.2206.11842 |
Popis: |
Joint Gaussian measurements of two quantum systems can be used for quantum communication between remote parties, as in teleportation or entanglement swapping protocols. Many types of physical error sources throughout a protocol can be modeled by independent Gaussian error channels acting prior to measurement. In this work we study joint Gaussian measurements on two modes $\mathsf{A}$ and $\mathsf{B}$ that take place after independent single-mode Gaussian error channels, for example loss with parameters $l_\mathsf{A}$ and $l_\mathsf{B}$ followed by added noise with parameters $n_\mathsf{A}$ and $n_\mathsf{B}$. We show that, for any Gaussian measurement, if $l_\mathsf{A} + l_\mathsf{B} + n_\mathsf{A} + n_\mathsf{B} \geq 1$ then the effective total measurement is separable and unsuitable for teleportation or entanglement swapping of arbitrary input states. If this inequality is not satisfied then there exists a Gaussian measurement that remains inseparable. We extend the results and determine the set of pairs of single-mode Gaussian error channels that render all Gaussian measurements separable. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|