Modelling and simulation of ElasticSearch using CloudSim

Autor: Sergej Svorobej, Patricia Takako Endo, James M. Byrne, Manuel Noya Mario, Malika Bendechache, Theo Lynn, M. Eduardo Ares
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Bendechache, Malika ORCID: 0000-0003-0069-1860 , Svorobej, Sergej ORCID: 0000-0001-8900-8700 , Takako Endo, Patricia ORCID: 0000-0002-9163-5583 , Noya Mario, Manuel, Ares, M. Eduardo ORCID: 0000-0003-3807-5692 , Byrne, James ORCID: 0000-0002-9260-6020 and Lynn, Theo ORCID: 0000-0001-9284-7580 (2019) Modelling and simulation of ElasticSearch using CloudSim. In: IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), 7-9 Oct 2019, Cosenza, Italy. ISBN 978-1-7281-2923-5
DS-RT
Popis: Simulation can be a powerful technique for evaluating the performance of large-scale cloud computing services in a relatively low cost, low risk and time-sensitive manner. Large-scale data indexing, distribution and management is complex to analyse in a timely manner. In this paper, we extend the CloudSim cloud simulation framework to model and simulate a distributed search engine architecture and its workload characteristics. To test the simulation framework, we develop a model based on a real-world ElasticSearch deployment on Linknovate.com. An experimental evaluation of the framework, comparing simulated and actual query response time, precision and resource utilisation, suggests that the proposed framework is capable of predicting performance at different scales in a precise, accurate and efficient manner. The results can assist ElasticSearch users to manage their scalability and infrastructure requirements.
Databáze: OpenAIRE