Non-stationary Energy in General Relativity
Autor: | Emel Altas, Bayram Tekin |
---|---|
Přispěvatelé: | Altaş, Emel |
Rok vydání: | 2019 |
Předmět: |
High Energy Physics - Theory
Physics Fourth order equation 010308 nuclear & particles physics General relativity Time evolution FOS: Physical sciences General Relativity and Quantum Cosmology (gr-qc) Mathematical Physics (math-ph) Invariant (physics) First order 01 natural sciences General Relativity and Quantum Cosmology symbols.namesake Hypersurface High Energy Physics - Theory (hep-th) 0103 physical sciences Homogeneous space symbols Mathematics::Differential Geometry Einstein 010306 general physics Mathematical Physics Mathematical physics |
ISSN: | 1948-2019 |
DOI: | 10.48550/arxiv.1911.08383 |
Popis: | Using the time evolution equations of (cosmological) General Relativity in the first order Fischer-Marsden form, we construct an integral that measures the amount of non-stationary energy on a given spacelike hypersurface in $D$ dimensions. The integral vanishes for stationary spacetimes; and with a further assumption, reduces to Dain's invariant on the boundary of the hypersurface which is defined with the Einstein constraints and a fourth order equation defining approximate Killing symmetries. Comment: 16 pages,dedicated to the memory of Rahmi Guven (1948-2019) who spent a life in gravity research in a region quite timid about science |
Databáze: | OpenAIRE |
Externí odkaz: |