Molecular structure of the cell-attachment protein of reovirus: correlation of computer-processed electron micrographs with sequence-based predictions
Autor: | Max L. Nibert, D. B. Furlong, A. C. Steven, B. L. Trus, B. N. Fields, R. D. B. Fraser |
---|---|
Rok vydání: | 1990 |
Předmět: |
Coiled coil
Molecular model Hydrogen bond Protein Conformation Immunology Sequence (biology) Biology Reoviridae Microbiology Folding (chemistry) Crystallography Microscopy Electron Viral Proteins Biochemistry Tetramer Virology Insect Science Molecule Capsid Proteins Amino Acid Sequence Peptide sequence Research Article |
Zdroj: | Journal of virology. 64(6) |
ISSN: | 0022-538X |
Popis: | The receptor-recognition interaction that initiates reovirus infection is mediated by the sigma 1 protein, located at the vertices of the icosahedral virion. We have applied computer-based image-averaging techniques to electron micrographs of negatively stained preparations of sigma 1 purified from virions (serotype 2 Jones). Combining these results with inferences based on the amino acid sequence has led to a molecular model in which the overall folding of the chains is described; its conformation embodies motifs, coiled-coil alpha-helices and nodular multichain elements rich in beta-sheets, previously detected in the corresponding proteins of other viruses, but with some novel variations. Sigma 1 is a filamentous lollipop-shaped molecule with an overall length of approximately 48 nm; it has a flexible "tail," approximately 40 nm long by 4 to 6 nm wide, terminating at its distal end in a globular "head," approximately 9.5 nm in diameter. The purified protein is a tetramer (4 by 50 kilodaltons) consisting of two similarly oriented dimers bonded side by side and in register. For each chain, a cluster of hydrophobic residues at its amino terminus resides at the proximal end of the tail; next, an alpha-helical domain (residues 25 to 172) participates in a two-chained coiled coil, 22 nm long, with two such coiled coils pairing laterally to form the proximal half of the tail. The remainder of the tail (residues 173 to approximately 316) is less uniform in width and is expected to be rich in beta-sheet; the interdimer bonding is evidently sustained through this portion of the molecule. Finally, the globular head consists of the carboxy-terminal domains (which contain the receptor-binding sites) folded into compact globular conformations; in appropriate side views, the head is resolved into two subunits, presumably contributed by the respective dimers. This model for how the four sigma 1 polypeptide chains are threaded in parallel through the fiber is supported by the observed match between an empirical curvature profile, which identifies the locations of relatively flexible sites along the tail, and the flexibility profile predicted on the basis of the model. Appraisal of the interactions that stabilize the coiled coils suggests that (i) the alpha-helices are individually only marginally stable, a property that may be of significance with regard to the retracted conformation in which sigma 1 is accommodated in the intact virion, and (ii) the predominant interactions between the two coiled coils are likely to involve hydrogen bonding between patches of uncharged residues. |
Databáze: | OpenAIRE |
Externí odkaz: |