A path-level exact parallelization strategy for sequential simulation

Autor: Julián M. Ortiz, Daniel Baeza, Oscar Peredo, José R. Herrero
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
Rok vydání: 2018
Předmět:
Sequential simulation
Speedup
Computer science
Gaussian
0208 environmental biotechnology
Bayesian probability
Multivariate normal distribution
02 engineering and technology
Parallel computing
010502 geochemistry & geophysics
Sequential Gaussian simulation
01 natural sciences
Field (computer science)
Geostatistical modelling
symbols.namesake
Kriging
Geologia -- Mètodes estadístics
Parallel simulations
Enginyeria civil::Geologia [Àrees temàtiques de la UPC]
Computers in Earth Sciences
Geologia -- Models matemàtics
Categorical variable
Bayesian approaches
0105 earth and related environmental sciences
Single- machines
Sequential indicator simulations
020801 environmental engineering
Geology -- Statistical methods
Informàtica::Informàtica teòrica [Àrees temàtiques de la UPC]
Path (graph theory)
Geology -- Mathematical models
symbols
Parallelization strategies
Algorithm
Information Systems
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
ISSN: 0098-3004
Popis: Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.
Databáze: OpenAIRE