Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes

Autor: Annette Gockele, Christophe Escape, Clément Piel, Gerd Gleixner, Dörte Bachmann, Nina Buchmann, Arthur Gessler, Anke Hildebrandt, Christiane Roscher, Damien Landais, Sébastien Devidal, Alexandru Milcu, Markus Guderle, Olivier Ravel, Jacques Roy
Přispěvatelé: Écotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), German Center for Integrative Biodiversity Research (iDiv) Halle-Jena- Leipzig, Leipzig, Germany, Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF), Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Institute of Agricultural Sciences [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft, Chair of Hydrogeology, Institute for Geosciences, Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany]
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Ecology Letters
Ecology Letters, Wiley, 2014, 17 (4), pp.435-444. ⟨10.1111/ele.12243⟩
ISSN: 1461-023X
1461-0248
DOI: 10.1111/ele.12243⟩
Popis: Little is known about the role of plant functional diversity for ecosystem-level carbon (C) fluxes. To fill this knowledge gap, we translocated monoliths hosting communities with four and 16 sown species from a long-term grassland biodiversity experiment (‘The Jena Experiment’) into a controlled environment facility for ecosystem research (Ecotron). This allowed quantifying the effects of plant diversity on ecosystem C fluxes as well as three parameters of C uptake efficiency (water and nitrogen use efficiencies and apparent quantum yield). By combining data on ecosystem C fluxes with vegetation structure and functional trait-based predictors, we found that increasing plant species and functional diversity led to higher gross and net ecosystem C uptake rates. Path analyses and light response curves unravelled the diversity of leaf nitrogen concentration in the canopy as a key functional predictor of C fluxes, either directly or indirectly via LAI and aboveground biomass.
Databáze: OpenAIRE