A New Version of the Generalized Krätzel-Fox Integral Operators
Autor: | J.F.M. Al-Omari, Ghalib Jumah, Deepali Saxena, Shrideh Al-Omari |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Boehmian space
Pure mathematics Boehmians General Mathematics H-function 01 natural sciences Convolution Operator (computer programming) Fréchet space Computer Science (miscellaneous) distribution space 0101 mathematics Convolution theorem Engineering (miscellaneous) Axiom Mathematics Real number lcsh:Mathematics 010102 general mathematics Krätzel operator lcsh:QA1-939 010101 applied mathematics kernel method Krätzel function Subspace topology |
Zdroj: | Mathematics Volume 6 Issue 11 Mathematics, Vol 6, Iss 11, p 222 (2018) |
ISSN: | 2227-7390 |
DOI: | 10.3390/math6110222 |
Popis: | This article deals with some variants of Krä tzel integral operators involving Fox&rsquo s H-function and their extension to classes of distributions and spaces of Boehmians. For real numbers a and b > 0 , the Fré chet space H a , b of testing functions has been identified as a subspace of certain Boehmian spaces. To establish the Boehmian spaces, two convolution products and some related axioms are established. The generalized variant of the cited Krä tzel-Fox integral operator is well defined and is the operator between the Boehmian spaces. A generalized convolution theorem has also been given. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |