Cross-resolution learning for face recognition

Autor: Fabio Valerio Massoli, Fabrizio Falchi, Giuseppe Amato
Jazyk: angličtina
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
I.2.6
I.2.10

Computer Science - Machine Learning
Computer science
Computer Vision and Pattern Recognition (cs.CV)
Computer Science - Computer Vision and Pattern Recognition
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
02 engineering and technology
Low resolution face recognition
Machine learning
computer.software_genre
Convolutional neural network
Facial recognition system
Machine Learning (cs.LG)
FOS: Electrical engineering
electronic engineering
information engineering

0202 electrical engineering
electronic engineering
information engineering

Preprocessor
10. No inequality
Image resolution
computer.programming_language
I.2.6
I.2.10
Artificial neural network
business.industry
Deep learning
Image and Video Processing (eess.IV)
020207 software engineering
Electrical Engineering and Systems Science - Image and Video Processing
Python (programming language)
Cross resolution face recognition
Signal Processing
020201 artificial intelligence & image processing
Computer Vision and Pattern Recognition
Artificial intelligence
business
computer
Zdroj: Image and vision computing 99 (2020). doi:10.1016/j.imavis.2020.103927
info:cnr-pdr/source/autori:Massoli F.V.; Amato G.; Falchi F./titolo:Cross-resolution learning for face recognition/doi:10.1016%2Fj.imavis.2020.103927/rivista:Image and vision computing/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:99
DOI: 10.1016/j.imavis.2020.103927
Popis: Convolutional Neural Network models have reached extremely high performance on the Face Recognition task. Mostly used datasets, such as VGGFace2, focus on gender, pose, and age variations, in the attempt of balancing them to empower models to better generalize to unseen data. Nevertheless, image resolution variability is not usually discussed, which may lead to a resizing of 256 pixels. While specific datasets for very low-resolution faces have been proposed, less attention has been paid on the task of cross-resolution matching. Hence, the discrimination power of a neural network might seriously degrade in such a scenario. Surveillance systems and forensic applications are particularly susceptible to this problem since, in these cases, it is common that a low-resolution query has to be matched against higher-resolution galleries. Although it is always possible to either increase the resolution of the query image or to reduce the size of the gallery (less frequently), to the best of our knowledge, extensive experimentation of cross-resolution matching was missing in the recent deep learning-based literature. In the context of low- and cross-resolution Face Recognition, the contribution of our work is fourfold: i) we proposed a training procedure to fine-tune a state-of-the-art model to empower it to extract resolution-robust deep features; ii) we conducted an extensive test campaign by using high-resolution datasets (IJB-B and IJB-C) and surveillance-camera-quality datasets (QMUL-SurvFace, TinyFace, and SCface) showing the effectiveness of our algorithm to train a resolution-robust model; iii) even though our main focus was the cross-resolution Face Recognition, by using our training algorithm we also improved upon state-of-the-art model performances considering low-resolution matches; iv) we showed that our approach could be more effective concerning preprocessing faces with super-resolution techniques. The python code of the proposed method will be available at https://github.com/fvmassoli/cross-resolution-face-recognition .
Databáze: OpenAIRE