Enabling the discovery of fast transients: A kilonova science module for the Fink broker

Autor: Biswas, B., Ishida, E.E.O., Peloton, J., Moller, A., Pruzhinskaya, M.V., de Souza, R.S., Muthukrishna, D.
Přispěvatelé: AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: We describe the fast transient classification algorithm in the center of the kilonova (KN) science module currently implemented in the Fink broker and report classification results based on simulated catalogs and real data from the ZTF alert stream. We used noiseless, homogeneously sampled simulations to construct a basis of principal components (PCs). All light curves from a more realistic ZTF simulation were written as a linear combination of this basis. The corresponding coefficients were used as features in training a random forest classifier. The same method was applied to long (>30 days) and medium (
8 Pages, 12 Figures, submitted to Astronomy and Astrophysics
Databáze: OpenAIRE