The weak Pleijel theorem with geometric control

Autor: Pierre Bérard, Bernard Helffer
Přispěvatelé: Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Jean Leray (LMJL), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Institut Fourier (IF ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)
Rok vydání: 2016
Předmět:
Mathematics - Differential Geometry
Open set
FOS: Physical sciences
Dirichlet Laplacian
01 natural sciences
Omega
Upper and lower bounds
Mathematics - Spectral Theory
Combinatorics
Nodal domains
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Simple (abstract algebra)
0103 physical sciences
FOS: Mathematics
Pleijel theorem
0101 mathematics
Spectral Theory (math.SP)
Mathematical Physics
Eigenvalues and eigenvectors
Mathematics
Courant theorem
010102 general mathematics
Order (ring theory)
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Mathematics::Spectral Theory
Eigenfunction
MSC 2010: 35P15
49R50

Differential Geometry (math.DG)
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
Bounded function
010307 mathematical physics
Geometry and Topology
[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
Zdroj: Journal of Spectral Theory
Journal of Spectral Theory, European Mathematical Society, 2016, 6 (4), pp.717--733
ISSN: 1664-039X
1664-0403
DOI: 10.4171/jst/138
Popis: Let $\Omega\subset \mathbb R^d\,, d\geq 2$, be a bounded open set, and denote by $\lambda\_j(\Omega), j\geq 1$, the eigenvalues of the Dirichlet Laplacian arranged in nondecreasing order, with multiplicities. The weak form of Pleijel's theorem states that the number of eigenvalues $\lambda\_j(\Omega)$, for which there exists an associated eigenfunction with precisely $j$ nodal domains (Courant-sharp eigenvalues), is finite. The purpose of this note is to determine an upper bound for Courant-sharp eigenvalues, expressed in terms of simple geometric invariants of $\Omega$. We will see that this is connected with one of the favorite problems considered by Y. Safarov.
Comment: Revised Oct. 12, 2016. To appear in Journal of Spectral Theory 6 (2016)
Databáze: OpenAIRE