Effect of finish line design on stress distribution in bilayer and monolithic zirconia crowns: a three-dimensional finite element analysis study
Autor: | Shinobu Yamauchi, Hiroshi Egusa, Shin Kasahara, Shoko Miura |
---|---|
Rok vydání: | 2018 |
Předmět: |
Dental Stress Analysis
Ceramics Chamfer Materials science medicine.medical_treatment Finite Element Analysis 0206 medical engineering Abutment 02 engineering and technology Crown (dentistry) Stress (mechanics) Dental Materials 03 medical and health sciences 0302 clinical medicine Materials Testing Perpendicular medicine Computer Simulation Cubic zirconia Ceramic Composite material General Dentistry Crowns 030206 dentistry 020601 biomedical engineering Finite element method Dental Prosthesis Design visual_art visual_art.visual_art_medium Zirconium |
Zdroj: | European Journal of Oral Sciences. 126:159-165 |
ISSN: | 0909-8836 |
DOI: | 10.1111/eos.12402 |
Popis: | This study evaluated the influence of different finish line designs and abutment materials on the stress distribution of bilayer and monolithic zirconia crowns using three-dimensional finite element analysis (FEA). Three-dimensional models of two types of zirconia premolars - a yttria-stabilized zirconia framework with veneering ceramic and a monolithic zirconia ceramic - were used in the analysis. Cylindrical models with the finish line design of the crown abutments were prepared with three types of margin curvature radius (CR): CR = 0 (CR0; shoulder margin), CR = 0.5 (CR0.5; rounded shoulder margin), and CR = 1.0 (CR1.0; deep chamfer margin). Two abutment materials (dentin and brass) were analyzed. In the FEA model, 1 N was loaded perpendicular to the occlusal surface at the center of the crown, and linear static analysis was performed. For all crowns, stress was localized to the occlusal loading area as well as to the axial walls of the proximal region. The lowest maximum principal stress values were observed when the dentin abutment with CR0.5 was used under a monolithic zirconia crown. These results suggest that the rounded shoulder margin and deep chamfer margin, in combination with a monolithic zirconia crown, potentially have optimal geometry to minimize occlusal stress. |
Databáze: | OpenAIRE |
Externí odkaz: |