Development and Optimization of an Airborne Formaldehyde Microfluidic Analytical Device Based on Passive Uptake through a Microporous Tube

Autor: Rubén Ocampo-Torres, Pierre Bernhardt, Claire Trocquet, Stéphane Le Calvé, Anaïs Becker, Christina Andrikopoulou
Přispěvatelé: Université Grenoble Alpes - Institut d'urbanisme et de géographie alpine (IUGA), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), In’Air Solutions [Strasbourg, France], European Project: LIFE17 ENV/FR/000330,SMART IN'AIR, Le Calvé, Stéphane, Smart indoor air monitoring network to reduce the impacts of pollutants on environment and health - SMART IN'AIR - LIFE17 ENV/FR/000330 - INCOMING, Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), OCAMPO-TORRES, Ruben
Jazyk: angličtina
Rok vydání: 2019
Předmět:
[SDE] Environmental Sciences
microporous membrane
microdevice
Materials science
[CHIM.ANAL] Chemical Sciences/Analytical chemistry
010504 meteorology & atmospheric sciences
Acetylacetone
Microfluidics
Formaldehyde
Analytical chemistry
microfluidics
02 engineering and technology
indoor air
01 natural sciences
Article
chemistry.chemical_compound
[CHIM.ANAL]Chemical Sciences/Analytical chemistry
Tube (fluid conveyance)
Electrical and Electronic Engineering
Derivatization
passive sampling
0105 earth and related environmental sciences
Detection limit
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere

[SDU.OCEAN] Sciences of the Universe [physics]/Ocean
Atmosphere

[SDE.IE]Environmental Sciences/Environmental Engineering
Mechanical Engineering
Microporous material
021001 nanoscience & nanotechnology
6. Clean water
Volumetric flow rate
chemistry
Control and Systems Engineering
[SDE]Environmental Sciences
formaldehyde
[SDE.IE] Environmental Sciences/Environmental Engineering
0210 nano-technology
Zdroj: Micromachines
Micromachines, MDPI, 2019, 10 (12), pp.807. ⟨10.3390/mi10120807⟩
Micromachines, 2019, 10 (12), pp.807. ⟨10.3390/mi10120807⟩
Volume 10
Issue 12
ISSN: 2072-666X
Popis: This paper describes a compact microfluidic analytical device developed for the detection of low airborne formaldehyde concentrations. This microdevice was based on a three-step analysis, i.e., the passive gaseous formaldehyde uptake using a microporous membrane into an acetylacetone solution, the derivatization with acetylacetone to form 3,5-diacetyl-1,4-dihydrolutidine, and the quantification of the latter using fluorescence detection. For a rapid and easier implementation, a cylindrical geometry of the microporous element was considered to perform laboratory-controlled experiments with known formaldehyde concentrations and to establish the proof of concept. This work reports the evaluation of the uptake performance according to the microporous tube length, the liquid flow rate inside the tube, the gas flow rate outside the tube, and the gaseous formaldehyde concentration. A 10.0 cm microporous tube combined with a gas flow rate of 250 NmL/min (normal milliliters per minute) and a liquid flow rate of 17 µ
L/min were found to be the optimized conditions. In these experimental conditions, the fluorescence signal increased linearly with the gaseous formaldehyde concentration in the range 0&ndash
118 µ
g/m3, with the detection limit being estimated as 0.13 µ
g/m3 when considering a signal-to-noise ratio of 3.
Databáze: OpenAIRE