A stochastic approach to enhanced diffusion
Autor: | Michele Coti Zelati, Theodore D. Drivas |
---|---|
Rok vydání: | 2021 |
Předmět: |
FOS: Physical sciences
01 natural sciences 010305 fluids & plasmas Theoretical Computer Science Interpretation (model theory) Physics::Fluid Dynamics Mathematics - Analysis of PDEs Mathematics (miscellaneous) 0103 physical sciences FOS: Mathematics 0101 mathematics Diffusion (business) Mathematics Fusion Probability (math.PR) 010102 general mathematics Mathematical analysis Fluid Dynamics (physics.flu-dyn) Probabilistic logic Physics - Fluid Dynamics Dissipation Lipschitz continuity Shear (sheet metal) Convection–diffusion equation Mathematics - Probability Analysis of PDEs (math.AP) |
Zdroj: | ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :811-834 |
ISSN: | 2036-2145 |
DOI: | 10.2422/2036-2145.201911_013 |
Popis: | We provide examples of initial data which saturate the enhanced diffusion rates proved for general shear flows which are H\"{o}lder regular or Lipschitz continuous with critical points, and for regular circular flows, establishing the sharpness of those results. Our proof makes use of a probabilistic interpretation of the dissipation of solutions to the advection diffusion equation. Comment: 17 pages, 3 figures |
Databáze: | OpenAIRE |
Externí odkaz: |