The self-organization of ball bouncing
Autor: | Isabelle A. Siegler, Guillaume Avrin, Maria Makarov, Pedro Rodriguez-Ayerbe |
---|---|
Přispěvatelé: | Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Complexité, Innovation, Activités Motrices et Sportives (CIAMS), Université Paris-Sud - Paris 11 (UP11)-Université d'Orléans (UO), Supélec Sciences des Systèmes (E3S), Ecole Supérieure d'Electricité - SUPELEC (FRANCE), Fondation de Coopération Scientifique Campus Paris-Saclay |
Rok vydání: | 2018 |
Předmět: |
Periodicity
Visual perception General Computer Science Computer science Movement Motion Perception Gravitational acceleration Visual control 050105 experimental psychology [SPI.AUTO]Engineering Sciences [physics]/Automatic 03 medical and health sciences 0302 clinical medicine Control theory Limit cycle Humans Paddle 0501 psychology and cognitive sciences 05 social sciences Virtual Reality Central pattern generator Motor control Biobehavioral Sciences Biomechanical Phenomena Forearm Nonlinear Dynamics Central Pattern Generators Ball (bearing) Psychomotor Performance 030217 neurology & neurosurgery Gravitation Biotechnology |
Zdroj: | Biological Cybernetics (Modeling) Biological Cybernetics (Modeling), Springer Verlag, 2018, ⟨10.1007/s00422-018-0776-8⟩ |
ISSN: | 1432-0770 0340-1200 |
Popis: | International audience; The hybrid rhythmic ball-bouncing task considered in this study requires a participant to hit a ball in a virtual environment by moving a paddle in the real environment. It allows for investigation of the on-line visual control of action in humans. Changes in gravity acceleration in the virtual environment affect the ball dynamics and modify the ball-paddle system limit cycle. These changes are shown to be accurately reproduced through simulation by a model integrating continuous information-movement couplings between the ball trajectory and the paddle trajectory, giving rise to a resonance tuning phenomenon. On the contrary, the tested models integrating only intermittent sensorimotor couplings were unable to replicate the observed human behavior. Results suggest that the visual control of action is achieved on-line, in a prospective way. Human rhythmic motor control would benefit from the timing and phase control emerging from the low-level continuous coupling between the central pattern generator and the visual perception of the ball trajectory. This control strategy, which precludes the need for internal clock and explicit environmental representation, is also able to explain the empirical result that the bounces tend to converge toward a passive stability regime during human ball bouncing. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |