BioPyC, an Open-Source Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification

Autor: Fabien Lotte, Aurélien Appriou, Dan Dutartre, Léa Pillette, Andrzej Cichocki, David Trocellier
Přispěvatelé: Popular interaction with 3d content (Potioc), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), RIKEN Center for Brain Science [Wako] (RIKEN CBS), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria), Skolkovo Institute of Science and Technology [Moscow] (Skoltech), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Inria Bordeaux - Sud-Ouest
Jazyk: angličtina
Rok vydání: 2021
Předmět:
OpenVibe
Computer science
0206 medical engineering
TP1-1185
02 engineering and technology
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
Electroencephalography
Machine learning
computer.software_genre
Biochemistry
Python platform
Article
physiological signals
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Analytical Chemistry
03 medical and health sciences
0302 clinical medicine
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
brain–computer interfaces (BCI)
medicine
Animals
Biosignal
electroencephalography (EEG)
[INFO.INFO-BT]Computer Science [cs]/Biotechnology
Electrical and Electronic Engineering
signal processing
Instrumentation
Protocol (object-oriented programming)
Graphical user interface
computer.programming_language
Brain–computer interface
Signal processing
medicine.diagnostic_test
business.industry
Chemical technology
Brain
Signal Processing
Computer-Assisted

Python (programming language)
020601 biomedical engineering
Atomic and Molecular Physics
and Optics

Boidae
machine learning
Brain-Computer Interfaces
Artificial intelligence
business
computer
Algorithms
030217 neurology & neurosurgery
Zdroj: Sensors
Volume 21
Issue 17
MDPI Sensors
Sensors (Basel, Switzerland)
Sensors, Vol 21, Iss 5740, p 5740 (2021)
Sensors, 2021, 21, ⟨10.3390/s21175740⟩
Sensors, MDPI, 2021, 21, ⟨10.3390/s21175740⟩
ISSN: 1424-8220
DOI: 10.3390/s21175740
Popis: International audience; Research on brain–computer interfaces (BCIs) has become more democratic in recent decades, and experiments using electroencephalography (EEG)-based BCIs has dramatically increased. The variety of protocol designs and the growing interest in physiological computing require parallel improvements in processing and classification of both EEG signals and bio signals, such as electrodermal activity (EDA), heart rate (HR) or breathing. If some EEG-based analysis tools are already available for online BCIs with a number of online BCI platforms (e.g., BCI2000 or OpenViBE), it remains crucial to perform offline analyses in order to design, select, tune, validate and test algorithmsbefore using them online. Moreover, studying and comparing those algorithms usually requires expertise in programming, signal processing and machine learning, whereas numerous BCI researchers come from other backgrounds with limited or no training in such skills. Finally, existing BCI toolboxes are focused on EEG and other brain signals but usually do not include processing tools for other bio signals. Therefore, in this paper, we describe BioPyC, a free, open-source and easy-to-use Python platform for offline EEG and biosignal processing and classification. Based on an intuitive and well-guided graphical interface, four main modules allow the user to follow the standard steps of the BCI process without any programming skills: (1) reading different neurophysiological signal data formats, (2) filtering and representing EEG and bio signals, (3) classifying them, and (4) visualizing and performing statistical tests on the results. We illustrate BioPyC use on four studies, namely classifying mental tasks, the cognitive workload, emotions and attention states from EEG signals.
Databáze: OpenAIRE