Higher rank Segre integrals over the Hilbert scheme of points

Autor: Dragos Oprea, Rahul Pandharipande, Alina Marian
Rok vydání: 2021
Předmět:
Zdroj: Journal of the European Mathematical Society, 24 (8)
ISSN: 1435-9855
1435-9863
DOI: 10.4171/jems/1149
Popis: Let S be a nonsingular projective surface. Each vector bundle V on S of rank s induces a tautological vector bundle over the Hilbert scheme of n points of S. When s = 1, the top Segre classes of the tautological bundles are given by a recently proven formula conjectured in 1999 by M. Lehn. We calculate here the Segre classes of the tautological bundles for all ranks s over all K-trivial surfaces. Furthermore, in rank s = 2, the Segre integrals are determined for all surfaces, thus establishing a full analogue of Lehn's formula. We also give conjectural formulas for certain series of Verlinde Euler characteristics over the Hilbert schemes of points.
Journal of the European Mathematical Society, 24 (8)
ISSN:1435-9855
ISSN:1435-9863
Databáze: OpenAIRE