Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation
Autor: | Olivier Gourhant, Marc Juhel, Romain Duru, Clement Pribat, François Bertin, F. Abbate, Fabien Rozé, Elisabeth Blanquet |
---|---|
Přispěvatelé: | Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Service de Chirurgie Thoracique et Vasculaire - Médecine vasculaire [CHU Limoges], CHU Limoges, STMicroelectronics [Crolles] (ST-CROLLES), Laboratorio di Chimica Bioinorganica (LCBI), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Università degli Studi di Firenze = University of Florence (UniFI) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
010302 applied physics
Thermal oxidation In situ Work (thermodynamics) Materials science Fabrication Kinetics Condensation fungi Oxide General Physics and Astronomy Nanotechnology 02 engineering and technology 021001 nanoscience & nanotechnology 01 natural sciences Steam generation [SPI.MAT]Engineering Sciences [physics]/Materials chemistry.chemical_compound chemistry Chemical engineering 13. Climate action 0103 physical sciences 0210 nano-technology |
Zdroj: | Journal of Applied Physics Journal of Applied Physics, American Institute of Physics, 2017, 121 (24), ⟨10.1063/1.4987040⟩ Journal of Applied Physics, 2017, 121 (24), ⟨10.1063/1.4987040⟩ |
ISSN: | 0021-8979 1089-7550 |
Popis: | International audience; The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 angstrom to 150 angstrom range grown with oxidation temperatures between 850 and 1100 degrees C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface. Published by AIP Publishing. |
Databáze: | OpenAIRE |
Externí odkaz: |