Spectral Sequences For Commutative Lie Algebras
Autor: | Friedrich Wagemann |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN) |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Computation primary: 17b50 General Mathematics commutative lie algebra 17b55 17a32 01 natural sciences Mathematics::Algebraic Topology 17b56 leibniz cohomology Mathematics::K-Theory and Homology spectral sequence Lie algebra QA1-939 FOS: Mathematics Algebraic Topology (math.AT) Mathematics - Algebraic Topology 0101 mathematics commutative cohomology [MATH]Mathematics [math] Commutative property Mathematics 010102 general mathematics Construct (python library) Cohomology 010101 applied mathematics [MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] Spectral sequence chevalley-eilenberg cohomology Focus (optics) secondary: 17a30 |
Zdroj: | Communications in Mathematics, Vol 28, Iss 2, Pp 123-137 (2020) |
DOI: | 10.48550/arxiv.1908.06764 |
Popis: | We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic 2. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley--Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations. |
Databáze: | OpenAIRE |
Externí odkaz: |