Flow Cytometric Detection of Mitochondrial Dysfunction in Subpopulations of Human Mononuclear Cells
Autor: | Wolfram S. Kunz, Kirstin Winkler, Hartmut Lins, Dagmar Kunz, C. Luley |
---|---|
Rok vydání: | 1997 |
Předmět: |
Ophthalmoplegia
Chronic Progressive External Mitochondrial DNA Lymphocyte Biophysics Mitochondrion Biology Biochemistry Peripheral blood mononuclear cell Flow cytometry medicine Humans Molecular Biology Dihydrolipoamide Dehydrogenase Flavoproteins medicine.diagnostic_test Monocyte Cell Biology Flow Cytometry Molecular biology Mitochondria Autofluorescence medicine.anatomical_structure Mitochondrial respiratory chain Leukocytes Mononuclear Caprylates Oxidation-Reduction |
Zdroj: | Analytical Biochemistry. 246:218-224 |
ISSN: | 0003-2697 |
DOI: | 10.1006/abio.1997.2007 |
Popis: | At 488 nm argon-ion laser excitation human mononuclear cells emit flavoprotein-related autofluorescence signals. Approximately 60% of these are caused by the mitochondrial flavoproteins alpha-lipoamide dehydrogenase and electron transfer flavoprotein, having differences in their fluorescence emission spectra. At the emission wavelength of 530 nm the redox changes of alpha-lipoamide dehydrogenase fluorescence in human mononuclear cells can be monitored by flow cytometry. This allows the estimation of the steady-state reduction level of this flavoprotein being in redox equilibrium with the mitochondrial NAD-system. We applied this method to elucidate the possible impairment of mitochondrial function in subpopulations of mononuclear cells of patients harboring deletions of the mitochondrial DNA in skeletal muscle. In the monocyte fraction of three patients and in the lymphocyte fraction of one patient we observed in the presence of the mitochondrial substrate octanoate elevated steady-state reduction levels of alpha-lipoamide dehydrogenase. This is an indication for the presence of respiratory chain-inhibited mitochondria in mononuclear cell subpopulations of the described patients. These data were confirmed by conventional determinations of maximal oxygen consumption rates of digitonin-permeabilized cells. Therefore, the flow cytometric determination of flavoprotein-caused autofluorescence changes is a useful and sensitive method for the detection of an impairment of mitochondrial respiratory chain in subpopulations of heterogeneous cell suspensions. |
Databáze: | OpenAIRE |
Externí odkaz: |