Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods
Autor: | Daniele Antonio Di Pietro, Olivier Le Maitre, Michele Botti, Pierre Sochala |
---|---|
Přispěvatelé: | Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Politecnico di Milano [Milan] (POLIMI), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Discretization
Computational Mechanics General Physics and Astronomy 010103 numerical & computational mathematics 01 natural sciences poroelasticity Polynomial Chaos expansions Pseudo-Spectral Projection methods Convergence (routing) FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Applied mathematics Mathematics - Numerical Analysis 0101 mathematics Uncertainty quantification Hybrid High-Order methods Mathematics Polynomial chaos Mechanical Engineering Biot problem poroelasticity Uncertainty Quantification Polynomial Chaos expansions Pseudo-Spectral Projection methods Hybrid High-Order methods Sparse grid Numerical Analysis (math.NA) Solver Biot problem Computer Science Applications 010101 applied mathematics 65C30 65M60 65M70 35R60 76S05 Mechanics of Materials Probability distribution Partial derivative Uncertainty Quantification [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | Computer Methods in Applied Mechanics and Engineering Computer Methods in Applied Mechanics and Engineering, Elsevier, 2020, 361, pp.112736. ⟨10.1016/j.cma.2019.112736⟩ |
ISSN: | 0045-7825 |
DOI: | 10.1016/j.cma.2019.112736⟩ |
Popis: | In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partial differential system and establish its well-posedness. We then discuss the approximation of the parameter-dependent problem by non-intrusive techniques based on Polynomial Chaos decompositions. We specifically focus on sparse spectral projection methods, which essentially amount to performing an ensemble of deterministic model simulations to estimate the expansion coefficients. The deterministic solver is based on a Hybrid High-Order discretization supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the probability error of the Polynomial Chaos approximation with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem. 30 pages, 15 Figures |
Databáze: | OpenAIRE |
Externí odkaz: |