Nakayama automorphisms of double Ore extensions of Koszul regular algebras

Autor: Fred Van Oystaeyen, Yinhuo Zhang, Can Zhu
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Manuscripta mathematica
ISSN: 0025-2611
Popis: Let $A$ be a Koszul Artin-Schelter regular algebra and $\sigma$ an algebra homomorphism from $A$ to $M_{2\times 2}(A)$. We compute the Nakayama automorphisms of a trimmed double Ore extension $A_P[y_1, y_2; \sigma]$ (introduced in \cite{ZZ08}). Using a similar method, we also obtain the Nakayama automorphism of a skew polynomial extension $A[t; \theta]$, where $\theta$ is a graded algebra automorphism of $A$. These lead to a characterization of the Calabi-Yau property of $A_P[y_1, y_2; \sigma]$, the skew Laurent extension $A[t^{\pm 1}; \theta]$ and $A[y_1^{\pm 1}, y_2^{\pm 1}; \sigma]$ with $\sigma$ a diagonal type.
Comment: The paper has been heavily revised including the title, and will appear in Manuscripta Mathematica
Databáze: OpenAIRE