Computer-Aided Diagnosis of Diagnostically Challenging Lesions in Breast MRI: A Comparison between a Radiomics and a Feature-Selective Approach

Autor: Marc B. I. Lobbes, Uwe Meyer-Bäse, Katja Pinker-Domenig, Anke Meyer-Baese, I. P. L. Houben, Guillaume Lemaitre, Bernhard Burgeth, Sebastian Hoffmann, Georg Wengert
Přispěvatelé: Dept Computer Science, Florida State University, Florida State University [Tallahassee] (FSU), Dept Radiol. Nuclear Medicine, Maastricht University, Maastricht University [Maastricht], Memorial Sloane Kettering Cancer Center [New York], Medizinische Universität Wien = Medical University of Vienna, Universität des Saarlandes [Saarbrücken], Dept Elect and Comp Engn, Florida State University, Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Sponsor(s):SPIE, Dai, L, Zheng, Y, Chu, H, MeyerBase, AD, Florida State University [Tallahassee] ( FSU ), Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS )
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Moments
Visual descriptors
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
02 engineering and technology
Diagnostically challenging lesions
030218 nuclear medicine & medical imaging
03 medical and health sciences
[SPI]Engineering Sciences [physics]
0302 clinical medicine
Radiomics
0202 electrical engineering
electronic engineering
information engineering

[ SPI ] Engineering Sciences [physics]
Medicine
Breast MRI
Computer vision
breast magnetic resonance imaging
morphological and kinetic features
ComputingMethodologies_COMPUTERGRAPHICS
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]
Lesion detection
medicine.diagnostic_test
business.industry
Enhancement
Magnetic resonance imaging
Cad system
ComputingMethodologies_PATTERNRECOGNITION
classification
Computer-aided diagnosis
Feature (computer vision)
radiomics
Tool
020201 artificial intelligence & image processing
computer-aided diagnosis
Artificial intelligence
business
Zdroj: Sensing and Analysis Technologies for Biomedical and Cognitive Applications 2016
Conference on Sensing and Analysis Technologies for Biomedical and Cognitive Applications
Conference on Sensing and Analysis Technologies for Biomedical and Cognitive Applications, Apr 2016, Baltimore, MD, United States. pp.UNSP 98710H, ⟨10.1117/12.2228994⟩
Dai, L; Zheng, Y ; Chu, H; MeyerBase, AD. Conference on Sensing and Analysis Technologies for Biomedical and Cognitive Applications, Apr 2016, Baltimore, MD, United States. SPIE-INT SOC OPTICAL ENGINEERING, 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA, Sensing and Analysis Technologies for Biomedical and Cognitive Applications 2016, 9871, pp.UNSP 98710H, 2016, Proceedings of SPIE. 〈http://spie.org/Publications/Proceedings/Paper/10.1117/12.2228994〉. 〈10.1117/12.2228994〉
DOI: 10.1117/12.2228994⟩
Popis: International audience; Diagnostically challenging lesions pose a challenge both for the radiological reading and also for current CAD systems. They are not well-defined in both morphology (geometric shape) and kinetics (temporal enhancement) and pose a problem to lesion detection and classification. Their strong phenotypic differences can be visualized by MRI. Radiomics represents a novel approach to achieve a detailed quantification of the tumour phenotypes by analyzing a large number of image descriptors. In this paper, we apply a quantitative radiomics approach based on shape, texture and kinetics tumor features and evaluate it in comparison to a reduced-order feature approach in a computer-aided diagnosis system applied to diagnostically challenging lesions.
Databáze: OpenAIRE