Vibrational properties of quasi-periodic beam structures
Autor: | Julien Réthoré, Arthur Glacet, Anne Tanguy |
---|---|
Přispěvatelé: | Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Génie Civil et Mécanique (GeM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE30-0007,METACRACK,Rupture dynamique des méta-matériaux(2016) |
Rok vydání: | 2019 |
Předmět: |
Acoustics and Ultrasonics
Band gap 02 engineering and technology Bending Vibration 01 natural sciences Molecular physics Quasi-periodic 0203 mechanical engineering Normal mode Dispersion Relation [PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] 0103 physical sciences Physics::Atomic and Molecular Clusters Physics::Chemical Physics 010301 acoustics Physics Beam Lattice Mechanical Engineering Atom vibrations Condensed Matter Physics 020303 mechanical engineering & transports Mechanics of Materials Band Gap Structure factor Longitudinal wave Beam (structure) |
Zdroj: | Journal of Sound and Vibration Journal of Sound and Vibration, Elsevier, 2019, ⟨10.1016/j.jsv.2018.10.045⟩ |
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2018.10.045 |
Popis: | International audience; Quasi-periodic structures have been widely studied, notably in the atomic vibration domain. In this paper a beam structure based on Octagonal quasi-periodic tiling is studied. We provide a complete description of its vibrational response, including the density of its vibrational states, a detailed description of its vibration modes, and the computation of the dynamical structure factor (spectral density of energy) for transverse and for longitudinal waves. It is shown that quasi-periodic structures exhibit localized low frequency vibration modes that are due to resonant vibrations of isolated patterns in the quasi-periodic structure, but in opposite, high-frequency modes are (non-trivially) extended. Moreover, the paper shows the possible existence of band gaps in the vibrational response of periodic and quasi-periodic beam lattices as a function of the ratio between the bending and the tensile stiffness of the beams. |
Databáze: | OpenAIRE |
Externí odkaz: |