13C and 15N NMR evidence for peripheral intercalation of uniformly labeled fusogenic peptides incorporated in a biomimetic membrane
Autor: | Prashant Agrawal, Johan Hollander, Dieter Langosch, Huub J. M. de Groot, Suzanne Kiihne |
---|---|
Rok vydání: | 2007 |
Předmět: |
Magnetic Resonance Spectroscopy
Lipid Bilayers Molecular Sequence Data Intercalation (chemistry) Biophysics Membrane Fusion Models Biological Biochemistry Nuclear magnetic resonance Biomimetics Amino Acid Sequence Lipid bilayer Solid state NMR Carbon Isotopes Nitrogen Isotopes Chemistry Bilayer Lipid bilayer fusion Cell Biology Nuclear magnetic resonance spectroscopy Transmembrane membrane fusogenic polypeptide Transmembrane protein Oriented bilayer Solid-state nuclear magnetic resonance Heteronuclear molecule Peptides Hydrophobic and Hydrophilic Interactions |
Zdroj: | Biochimica et Biophysica Acta-Biomembranes, 1768(12), 3020-3028 |
ISSN: | 0005-2736 |
DOI: | 10.1016/j.bbamem.2007.09.024 |
Popis: | Membrane fusion requires drastic and transient changes of bilayer curvature and here we have studied the interaction of three de novo designed synthetic hydrophobic peptides with a biomimetic three-lipid mixture by solid state NMR. An experimental approach is presented for screening of peptide–lipid interactions and their aggregation, and their embedding in a biomimetic membrane system using established proton-decoupled 13C, 15N and proton spin diffusion heteronuclear 1H−13C correlation NMR methods at high magnetic field. Experiments are presented for a set of de-novo designed fusion peptides in interaction with their lipid environment. The data provide additional support for the transmembrane model for the least fusogenic peptide, L16, while the peripheral intercalation model is preferred for the fusogenic peptides LV16 and LV16G8P9. This contributes to converging evidence that peripheral intercalation is both necessary and sufficient to trigger the fusion process for a lipid mixture close to a critical point for phase separation across the bilayer. |
Databáze: | OpenAIRE |
Externí odkaz: |