Optimal Inverse Projection of Floating-Point Addition

Autor: Pascal Cuoq, Diane Gallois-Wong, Sylvie Boldo
Přispěvatelé: Formally Verified Programs, Certified Tools and Numerical Computations (TOCCATA), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Recherche en Informatique (LRI), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), TrustInSoft (TIS )
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Numerical Algorithms
Numerical Algorithms, Springer Verlag, In press, 83 (3), pp.957--986. ⟨10.1007/s11075-019-00711-z⟩
Numerical Algorithms, inPress, 83 (3), pp.957--986. ⟨10.1007/s11075-019-00711-z⟩
ISSN: 1017-1398
1572-9265
Popis: International audience; In a setting where we have intervals for the values of floating-point variables x, a, and b, we are interested in improving these intervals when the floating-point equality $x ⊕ a = $b holds. This problem is common in constraint propagation, and called the inverse projection of the addition. It also appears in abstract interpretation for the analysis of programs containing IEEE 754 operations. We propose floating-point theorems that provide optimal bounds for all the intervals. Fast loop-free algorithms compute these optimal bounds using only floating-point computations at the target precision.
Databáze: OpenAIRE