The equivariant Ehrhart theory of the permutahedron
Autor: | Federico Ardila, Andrés R. Vindas-Meléndez, Mariel Supina |
---|---|
Rok vydání: | 2020 |
Předmět: |
Permutohedron
Mathematics::Combinatorics Conjecture Group (mathematics) 05E18 52A38 52B15 14M25 14L30 Applied Mathematics General Mathematics 010102 general mathematics Polytope Mathematics::Algebraic Topology 01 natural sciences Action (physics) Combinatorics Mathematics::K-Theory and Homology 0103 physical sciences FOS: Mathematics Mathematics - Combinatorics Mathematics::Metric Geometry Equivariant map Combinatorics (math.CO) 010307 mathematical physics 0101 mathematics Special case Mathematics |
Zdroj: | Proceedings of the American Mathematical Society. 148:5091-5107 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/proc/15113 |
Popis: | Equivariant Ehrhart theory enumerates the lattice points in a polytope with respect to a group action. Answering a question of Stapledon, we describe the equivariant Ehrhart theory of the permutahedron, and we prove his Effectiveness Conjecture in this special case. v2: Minor edits. To appear in Proceedings of the American Mathematical Society. 15 pages, 2 figures, 3 tables, comments welcome |
Databáze: | OpenAIRE |
Externí odkaz: |