The functional inequality for the mixed quermassintegral
Autor: | Jianbo Fang, Congli Yang, Miao Luo, Fangwei Chen |
---|---|
Rok vydání: | 2020 |
Předmět: |
Inequality
lcsh:Mathematics Applied Mathematics media_common.quotation_subject 010102 general mathematics Minkowski inequality Function (mathematics) lcsh:QA1-939 01 natural sciences Log-concave function Combinatorics 0103 physical sciences Mathematics::Metric Geometry Mixed Quermassintegral inequality Discrete Mathematics and Combinatorics Quermassintegral 010307 mathematical physics 0101 mathematics Special case Analysis Mathematics media_common |
Zdroj: | Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-17 (2020) |
ISSN: | 1029-242X |
DOI: | 10.1186/s13660-020-02521-7 |
Popis: | In this paper, the functional Quermassintegrals of a log-concave function in $\mathbb{R}^{n}$ R n are discussed. The functional inequality for the ith mixed Quermassintegral is established. Moreover, as a special case, a weaker log-Quermassintegral inequality in $\mathbb{R}^{n}$ R n is obtained. |
Databáze: | OpenAIRE |
Externí odkaz: |